Conventional surgical closure techniques, such as sutures, clips, or skin closure strips, may not always provide optimal wound closure and may require invasive procedures, which can result in potential post-surgical complications. As result, there is a growing demand for innovative solutions to achieve superior wound closure and improve patient outcomes. To overcome the abovementioned issues, in situ generated hemostatic adhesives/sealants have emerged as a promising alternative, offering a targeted, controllable, and minimally invasive procedure for a wide variety of medical applications. The aim of this review is to provide a comprehensive overview of the mechanisms of action and recent advances of in situ generated hemostatic adhesives, particularly protein-based, thermoresponsive, bioinspired, and photocrosslinkable formulations, as well as the design challenges that must be addressed. Overall, this review aims to enhance a comprehensive understanding of the latest advancements of in situ generated hemostatic adhesives and their mechanisms of action, with the objective of promoting further research in this field.
Keywords: Adhesives; Biocompatible; Cohesion; Hemostatic; Hydrogels; In situ.
Copyright © 2023 The Authors. Published by Elsevier B.V. All rights reserved.