Ligand-Dependent Mechanisms of CC Chemokine Receptor 5 (CCR5) Trafficking Revealed by APEX2 Proximity Labeling Proteomics

bioRxiv [Preprint]. 2024 Aug 8:2023.11.01.565224. doi: 10.1101/2023.11.01.565224.

Abstract

CC chemokine receptor 5 (CCR5) promotes inflammatory responses by driving cell migration and scavenging chemokine to shape directional chemokine gradients. A CCR5 inhibitor has been approved for blocking HIV entry into cells. However, targeting CCR5 for the treatment of other diseases has had limited success, likely because of the complexity of CCR5 pharmacology and biology. CCR5 is activated by natural and engineered chemokines that elicit distinct signaling and trafficking responses, including receptor sequestration inside the cell. Intracellular sequestration may be therapeutically exploitable as a strategy for receptor inhibition, but the mechanisms by which different ligands promote receptor retention in the cell versus presence on the cell membrane are poorly understood. We employed live cell ascorbic acid peroxidase (APEX2) proximity labeling and quantitative mass spectrometry proteomics for unbiased discovery of temporally resolved protein neighborhoods of CCR5 following stimulation with its endogenous agonist, CCL5, and two CCL5 variants that promote intracellular retention of the receptor. Along with targeted pharmacological assays, the data reveal distinct ligand-dependent CCR5 trafficking patterns with temporal and spatial resolution. All three chemokines internalize CCR5 via β-arrestin-dependent, clathrin-mediated endocytosis but to different extents, with different kinetics and varying dependencies on GPCR kinase subtypes. The agonists differ in their ability to target the receptor to lysosomes for degradation, as well as to the Golgi compartment and the trans-Golgi network, and these trafficking patterns translate into distinct levels of ligand scavenging. The results provide insight into the cellular mechanisms behind CCR5 intracellular sequestration and suggest how trafficking can be exploited for the development of functional antagonists of CCR5.

Significance statement: CCR5 plays a crucial role in the immune system and is important in numerous physiological and pathological processes such as inflammation, cancer and transmission of HIV. It responds to different ligands with distinct signaling and trafficking behaviors; notably some ligands induce retention of the receptor inside the cell. Using time-resolved proximity labeling proteomics and targeted pharmacological experiments, this study reveals the cellular basis for receptor sequestration that can be exploited as a therapeutic strategy for inhibiting CCR5 function.

Publication types

  • Preprint