A vaccine against Trypanosoma cruzi, the agent of Chagas disease, would be an excellent additional tool for disease control. A recombinant vaccine based on Tc24 and TSA1 parasite antigens was found to be safe and immunogenic in naïve macaques. Here we performed a transcriptomic analysis of PBMC responses to vaccination, to shed light on the immunogenicity of this vaccine and guide the optimization of doses and formulation. RNA-sequencing analysis indicated a clear transcriptomic response of PBMCs from macaques after three vaccine doses, with the up-regulation of several immune cell activation pathways and a broad non-polarized immune profile. Analysis of the IgG repertoire showed that it had a rapid turnover with novel IgGs produced following each vaccine dose, while the TCR repertoire presented several persisting clones that were expanded after each vaccine dose. These data suggest that three vaccine doses may be needed for optimum immunogenecity and support the further evaluation of the protective efficacy of this vaccine.
Keywords: CDR3 domain; IgG; RNA sequencing; TCR; Trypanosoma cruzi; immune response.