Reliable knowledge graph fact prediction via reinforcement learning

Vis Comput Ind Biomed Art. 2023 Nov 20;6(1):21. doi: 10.1186/s42492-023-00150-7.

Abstract

Knowledge graph (KG) fact prediction aims to complete a KG by determining the truthfulness of predicted triples. Reinforcement learning (RL)-based approaches have been widely used for fact prediction. However, the existing approaches largely suffer from unreliable calculations on rule confidences owing to a limited number of obtained reasoning paths, thereby resulting in unreliable decisions on prediction triples. Hence, we propose a new RL-based approach named EvoPath in this study. EvoPath features a new reward mechanism based on entity heterogeneity, facilitating an agent to obtain effective reasoning paths during random walks. EvoPath also incorporates a new postwalking mechanism to leverage easily overlooked but valuable reasoning paths during RL. Both mechanisms provide sufficient reasoning paths to facilitate the reliable calculations of rule confidences, enabling EvoPath to make precise judgments about the truthfulness of prediction triples. Experiments demonstrate that EvoPath can achieve more accurate fact predictions than existing approaches.

Keywords: Entity heterogeneity; Fact prediction; Knowledge graph; Postwalking mechanism; Reinforcement learning.