Digital microfluidics with distance-based detection - a new approach for nucleic acid diagnostics

Lab Chip. 2023 Dec 20;24(1):63-73. doi: 10.1039/d3lc00683b.

Abstract

There is great enthusiasm for using loop-mediated isothermal amplification (LAMP) in point-of-care nucleic acid amplification tests (POC NAATs), as an alternative to PCR. While isothermal amplification techniques like LAMP eliminate the need for rapid temperature cycling in a portable format, these systems are still plagued by requirements for dedicated optical detection apparatus for analysis and manual off-chip sample processing. Here, we developed a new microfluidic system for LAMP-based POC NAATs to address these limitations. The new system combines digital microfluidics (DMF) with distance-based detection (DBD) for direct signal readout. This is the first report of the use of (i) LAMP or (ii) DMF with DBD - thus, we describe a number of characterization steps taken to determine optimal combinations of reagents, materials, and processes for reliable operation. For example, DBD was found to be quite sensitive to background signals from low molecular weight LAMP products; thus, a Capto™ adhere bead-based clean-up procedure was developed to isolate the desirable high-molecular-weight products for analysis. The new method was validated by application to detection of SARS-CoV-2 in saliva. The method was able to distinguish between saliva containing no virus, saliva containing a low viral load (104 genome copies per mL), and saliva containing a high viral load (108 copies per mL), all in an automated system that does not require detection apparatus for analysis. We propose that the combination of DMF with distance-based detection may be a powerful one for implementing a variety of POC NAATs or for other applications in the future.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Microfluidics*
  • Molecular Diagnostic Techniques / methods
  • Nucleic Acid Amplification Techniques
  • Nucleic Acids*
  • Point-of-Care Systems
  • Point-of-Care Testing
  • Polymerase Chain Reaction

Substances

  • Nucleic Acids