Nitrided Rhodium Nanoclusters with Optimized Water Bonding and Splitting Effects for pH-Universal H2-Production

Small. 2024 Apr;20(14):e2307405. doi: 10.1002/smll.202307405. Epub 2023 Nov 21.

Abstract

The nitridation of noble metals-based catalysts to further enhance their hydrogen evolution reaction (HER) kinetics in neutral and alkaline conditions would be an effective strategy for developing high-performance wide pH HER catalysts. Herein, a facile molten urea method is employed to construct the nitrided Rh nanoclusters (RhxN) supported on N-doped carbon (RhxN-NC). The uniformly distributed RhxN clusters exhibited optimized water bonding and splitting effects, therefore resulting in excellent pH-universal HER performance. The optimized RhxN-NC catalyst only requires 8, 12, and 109 mV overpotentials to reach the current density of 10 mA cm-2 in 0.5 M H2SO4, 1.0 M KOH, and 1.0 M PBS electrolytes, respectively. The spectroscopic characterizations and theoretical calculation further confirm the vital role of Rh-N moieties in RhxN clusters in improving the transfer of electrons and facilitating the generation of H2. This work not only provides a suitable nitridation method for noble metal species in mild conditions but also makes a breakthrough in synthesizing noble metal nitrides-based electrocatalysts to achieve an exceptional wide-pH HER performance and other catalysis.

Keywords: electrocatalysts; hydrogen evolution reaction; nitride metal cluster; pH‐universal; water splitting.