Zinc-dependent histone deacetylases (HDACs) play an essential role as epigenetic regulators and are becoming increasingly important drug targets for the treatment of cancer. Although five HDAC inhibitors have been approved for treating several cancers, only one of them is a Class I HDAC inhibitor, which may have advantages over pan-HDAC inhibitors due to the various side effects associated with the latter. On the other hand, the emerging strategy of molecular glue degraders offers a unique advantage for targeting therapeutic proteins. In this study, we synthesized a series of candidate compounds based on the molecule glue, pomalidomide, using a "merger principle", initially aiming to obtain molecular glue degraders that can target HDAC degradation. However, we serendipitously discovered that compounds 2f and 3f may be potent Class I HDAC selective inhibitors. After further evaluation, we found that compounds 2f and 3f exhibit selective inhibitory effects on Class I HDAC in cancer cells. Moreover, they showed the robust antiproliferative activities against various hematological tumor cells, comparable to that of the approved Class I HDAC inhibitor, Chidamide. These results suggest that pomalidomide-derivatized compounds have promising potential as Class I HDAC inhibitors with therapeutic applications in cancer treatment.
Keywords: Anticancer; Class; Degrader; HDAC; Inhibitor; Pomaildomide.
Copyright © 2023 Elsevier Masson SAS. All rights reserved.