Plants are primary source of nutrients for humans. However, the nutritional value of vegetables tends to decrease once organ and tissue sinks are detached from the plant. Minimal processing of leafy vegetables involves cutting and washing before packaging and storage. These processing procedures result in stressful conditions and post-harvest disorders senescence-related can also occur. The aim of this work is to define a methodological pipeline to evaluate the "quality" changes of fresh cut leafy vegetables over their shelf-life. At this purpose, intra-species variability has been investigated considering two varieties of Lactuca sativa (var. longifolia and capitata), showing different susceptibility to browning. Since browning mainly depends on phenol oxidation, redox parameters as well as the activity of the enzymes involved in phenol biosynthesis and oxidation have been monitored over storage time. At the same time, the metabolic changes of the lettuce leaves have been estimated as response patterns to chemical sensors. The obtained sensor outputs were predictive of browning-related biological features in a cultivar-dependent manner. The integration of the results obtained by this multivariate methodological approach allowed the identification of the most appropriate quality markers in lettuce leaves from different varieties. This methodological pipeline is proposed for the identification and subsequent monitoring of post-harvest quality of leafy vegetables.
© 2023. The Author(s).