A Five-Decade Text Mining Analysis of Cochlear Implant Research: Where We Started and Where We Are Heading

Medicina (Kaunas). 2023 Oct 24;59(11):1891. doi: 10.3390/medicina59111891.

Abstract

Background and Objectives: Since its invention in the 1970s, the cochlear implant (CI) has been substantially developed. We aimed to assess the trends in the published literature to characterize CI. Materials and Methods: We queried PubMed for all CI-related entries published during 1970-2022. The following data were extracted: year of publication, publishing journal, title, keywords, and abstract text. Search terms belonged to the patient's age group, etiology for hearing loss, indications for CI, and surgical methodological advancement. Annual trends of publications were plotted. The slopes of publication trends were calculated by fitting regression lines to the yearly number of publications. Results: Overall, 19,428 CIs articles were identified. Pediatric-related CI was the most dominant sub-population among the age groups, with the highest rate and slope during the years (slope 5.2 ± 0.3, p < 0.001), while elderly-related CIs had significantly fewer publications. Entries concerning hearing preservation showed the sharpest rise among the methods, from no entries in 1980 to 46 entries in 2021 (slope 1.7 ± 0.2, p < 0.001). Entries concerning robotic surgery emerged in 2000, with a sharp increase in recent years (slope 0.5 ± 0.1, p < 0.001). Drug-eluting electrodes and CI under local-anesthesia have been reported only in the past five years, with a gradual rise. Conclusions: Publications regarding CI among pediatrics outnumbered all other indications, supporting the rising, pivotal role of CI in the rehabilitation of children with sensorineural hearing loss. Hearing-preservation publications have recently rapidly risen, identified as the primary trend of the current era, followed by a sharp rise of robotic surgery that is evolving and could define the next revolution.

Keywords: artificial intelligence; cochlear implant; hearing loss; hearing preservation; indication; machine learning; pediatrics; robotic.

MeSH terms

  • Aged
  • Child
  • Cochlear Implantation* / methods
  • Cochlear Implants*
  • Deafness*
  • Hearing Loss* / surgery
  • Hearing Loss, Sensorineural*
  • Humans

Grants and funding

This research received no external funding.