Nitrogen-doped cavities are pervasive in graphenic materials, and represent key sites for catalytic and electrochemical activity. However, their structures are generally heterogeneous. In this study, we present the synthesis of a well-defined molecular cutout of graphene featuring N-doped cavity. The graphitization of a macrocyclic pyridinic precursor was achieved through photochemical cyclodehydrochlorination. In comparison to its counterpart with pyridinic nitrogen at the edges, the pyridinic nitrogen atoms in this nanographene cavity exhibit significantly reduced basicity and selective binding to Ag+ ion. Analysis of the protonation and coordination equilibria revealed that the tri-N-doped cavity binds three protons, but only one Ag+ ion. These distinct protonation and coordination behaviors clearly illustrate the space confinement effect imparted by the cavities.
Keywords: Cavity; Coordination; Nanographene; Protonation; Pyridinic Nitrogen-Doping.
© 2023 Wiley-VCH GmbH.