Quorum sensing (QS) is a widespread form of cell-cell signaling that regulates group behaviors important for competition and cooperation within bacterial communities. The QS systems from different bacterial species have diverse properties, but the functional consequences of this diversity are largely unknown. Taking advantage of hyper- and hypo-sensitive QS receptor variants in the opportunistic pathogen Pseudomonas aeruginosa, we examine the costs and benefits of altered signal sensitivity. We find that the sensitivity of a model QS receptor, LasR, impacts the timing and level of quorum gene expression, and fitness during intra- and interspecies competition. These findings suggest competition with kin and with other bacterial species work together to tune signal sensitivity.
Keywords: Pseudomonas aeruginosa; cell-cell signaling; interspecies interactions; quorum sensing; signal sensitivity.