Detailed information on plant community types, distribution, and their relationships with various environmental gradients is crucial for understanding forest dynamics and sustainable forest management because plant community types are influenced by various environmental factors. Thus, this study was conducted to investigate plant community types and species diversity in relation to various environmental gradients in Geramo Forest, which is a remnant forest in the western escarpment of the Rift Valley of Ethiopia. Vegetation data were collected in 96 nested plots (20 × 20 m2 and five 1 ×1 m2) laid systematically at a distance of 250 m along 16 line transects, which were laid 300 m apart. Environmental and disturbance variables were also collected from each main plot. Agglomerative hierarchical cluster analysis and Canonical correspondence analysis (CCA) with R software were used to identify plant community types and analyze the relationship between plant community types and environmental variables, respectively. The Shannon Wiener diversity index was used to compute species diversity among community types. Five significantly different (p ≤ 0.001) plant community types were identified. The CCA results showed that species diversity and community composition among different community types were significantly influenced by altitude, disturbance, soil organic carbon, slope, soil available phosphorus, and pH, which revealed the compounded effect of various environmental factors on species richness, diversity, and evenness among plant community types. The study also identified a significant level of anthropogenic disturbance and a strong reliance of the local community on the forest in the research area. Therefore, it is recommended that sustainable forest conservation interventions be implemented through awareness creation and the promotion of community-based approaches.
Copyright: © 2023 Getaneh et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.