Integrative multiomics analysis of neointima proliferation in human saphenous vein: implications for bypass graft disease

bioRxiv [Preprint]. 2023 Nov 17:2023.11.14.567053. doi: 10.1101/2023.11.14.567053.

Abstract

Introduction: Human saphenous veins (SV) are widely used as grafts in coronary artery bypass (CABG) surgery but often fail due to neointima proliferation (NP). NP involves complex interplay between vascular smooth muscle cells (VSMC) and fibroblasts. Little is known, however, regarding the transcriptomic and proteomic dynamics of NP. Here, we performed multi-omics analysis in an ex vivo tissue culture model of NP in human SV procured for CABG surgery.

Methods and results: Histological examination demonstrated significant elastin degradation and NP (indicated by increased neointima area and neointima/media ratio) in SV subjected to tissue culture. Analysis of data from 73 patients suggest that the process of SV adaptation and NP may differ according to sex and body mass index. RNA sequencing confirmed upregulation of pro-inflammatory and proliferation-related genes during NP and identified novel processes, including increased cellular stress and DNA damage responses, which may reflect tissue trauma associated with SV harvesting. Proteomic analysis identified upregulated extracellular matrix-related and coagulation/thrombosis proteins and downregulated metabolic proteins. Spatial transcriptomics detected transdifferentiating VSMC in the intima on the day of harvesting and highlighted dynamic alterations in fibroblast and VSMC phenotype and behavior during NP. Specifically, we identified new cell subpopulations contributing to NP, including SPP1 + , LGALS3 + VSMC and MMP2 + , MMP14 + fibroblasts.

Conclusion: Dynamic alterations of gene and protein expression occur during NP in human SV. Identification of the human-specific molecular and cellular mechanisms may provide novel insight into SV bypass graft disease.

Publication types

  • Preprint