Two-dimensional (2D) proton magnetic resonance techniques used in conjunction with laser photochemically induced dynamic nuclear polarization (photo-CIDNP) spectroscopy have been applied to studying the kringle 4 domain from human plasminogen at 360 MHz. Out of 11 potential CIDNP-sensitive aromatic side chains, only 5 (His3, Tyr41, Tyr50, Trp72, and Tyr74) appear to be accessible to 3-(carboxymethyl)lumiflavin, the dye used to photogenerate spin polarization. Of these, Trp72 and Tyr74 are known to be at, or near, the lysine-binding site. The spin-spin scalar (J) and phase-sensitive dipolar (Overhauser) connectivities in the 2D experiments yield absolute assignments for the aromatic signals stemming from the exposed tyrosyl and tryptophanyl rings. Moreover, a number of side-chain H beta resonances can be identified and assigned to specific types of aromatic amino acid residues.