Kringle 4 from human plasminogen: a proton magnetic resonance study via two-dimensional photochemically induced dynamic nuclear polarization spectroscopy

Biochemistry. 1986 Dec 2;25(24):7918-23. doi: 10.1021/bi00372a020.

Abstract

Two-dimensional (2D) proton magnetic resonance techniques used in conjunction with laser photochemically induced dynamic nuclear polarization (photo-CIDNP) spectroscopy have been applied to studying the kringle 4 domain from human plasminogen at 360 MHz. Out of 11 potential CIDNP-sensitive aromatic side chains, only 5 (His3, Tyr41, Tyr50, Trp72, and Tyr74) appear to be accessible to 3-(carboxymethyl)lumiflavin, the dye used to photogenerate spin polarization. Of these, Trp72 and Tyr74 are known to be at, or near, the lysine-binding site. The spin-spin scalar (J) and phase-sensitive dipolar (Overhauser) connectivities in the 2D experiments yield absolute assignments for the aromatic signals stemming from the exposed tyrosyl and tryptophanyl rings. Moreover, a number of side-chain H beta resonances can be identified and assigned to specific types of aromatic amino acid residues.

Publication types

  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, P.H.S.

MeSH terms

  • Amino Acid Sequence
  • Humans
  • Magnetic Resonance Spectroscopy / methods
  • Peptide Fragments / analysis
  • Plasminogen*
  • Protein Conformation

Substances

  • Peptide Fragments
  • Plasminogen