We present single-shot high-performance quantitative phase imaging with a physics-inspired plug-and-play denoiser for polarization differential interference contrast (PDIC) microscopy. The quantitative phase is recovered by the alternating direction method of multipliers (ADMM), balancing total variance regularization and a pre-trained dense residual U-net (DRUNet) denoiser. The custom DRUNet uses the Tanh activation function to guarantee the symmetry requirement for phase retrieval. In addition, we introduce an adaptive strategy accelerating convergence and explicitly incorporating measurement noise. After validating this deep denoiser-enhanced PDIC microscopy on simulated data and phantom experiments, we demonstrated high-performance phase imaging of histological tissue sections. The phase retrieval by the denoiser-enhanced PDIC microscopy achieves significantly higher quality and accuracy than the solution based on Fourier transforms or the iterative solution with total variance regularization alone.
© 2023 Optica Publishing Group under the terms of the Optica Open Access Publishing Agreement.