Detection of Asian genetic components in autochthonous human Echinococcus multilocularis infections from endemic Warmia-Masuria (north-eastern Poland)

One Health. 2023 Aug 25:17:100623. doi: 10.1016/j.onehlt.2023.100623. eCollection 2023 Dec.

Abstract

Alveolar echinococcosis is a life-threatening zoonotic disease caused by the larval stage of the cestode Echinococcus multilocularis. People are aberrant intermediate hosts accidentally infected with the parasite eggs via faecal-oral route, usually by the consumption of unwashed fruit and vegetable or direct contact with definitive hosts. The recently reported presence of Asian admixture in E. multilocularis tapeworms from Polish red foxes prompted the question of metacestode descent in the human population. In this study, a Maximum Likelihood tree based on partial sequences of E. multilocularis mitochondrial genes cox1, cob, and nad2 coupled with a hierarchical clustering analysis of microsatellite EmsB profiles and supplemented by Sammon's nonlinear mapping with k-means clustering revealed Asian genetic components, to date associated only with the sylvatic cycle, in two autochthonous samples from alveolar echinococcosis patients living in endemic Warmia-Masuria, north-eastern Poland. The red fox is the most likely source of contamination in the environment shared by people and wildlife that led to these infections. Our results confirm that Asian genetic variants participate in the synanthropic cycle in north-eastern Poland and indicate that they may be present in the human population in other areas where Asian genetic variants were detected in red foxes.

Keywords: Asian origin; Human alveolar echinococcosis; Microsatellite EmsB; Mitochondrial sequencing; Poland.