Tanshinone IIA ameliorates the development of dermal fibrosis in systemic sclerosis

Clin Exp Pharmacol Physiol. 2024 Feb;51(2):e13834. doi: 10.1111/1440-1681.13834. Epub 2023 Nov 30.

Abstract

Objectives: We previously revealed the role of tanshinone IIA (TAN IIA) on endothelial cells and the impact of TAN IIA on the endothelial-to-mesenchymal transition in systemic sclerosis (SSc). In this study, we sought to further determine whether TAN IIA can directly act on the skin fibroblasts of scleroderma and look into its underlying anti-fibrotic mechanisms.

Methods: Bleomycin was used to establish the SSc mouse model. After TAN IIA treatment, dermal thickness, type I collagen and hydroxyproline content were measured. Primary fibroblasts were acquired from SSc patients and cultured in vitro, and the effects of TAN IIA on proliferation, apoptosis and the cell cycle of fibroblasts were detected.

Results: In a bleomycin-induced SSc model, we discovered that TAN IIA significantly improved skin thickness and collagen deposition, demonstrating a potent anti-fibrotic action. TAN IIA inhibits the proliferation of skin fibroblasts derived from SSc patients by causing G2/M cell cycle arrest and promoting apoptosis. Additionally, TAN IIA downregulated extracellular matrix gene transcription and collagen protein expression in skin fibroblasts in a dose-gradient-dependent manner. Furthermore, we showed how TAN IIA can reduce the activation of the transforming growth factor-β (TGF-β)/Smad and mitogen-activated protein kinase (MAPK)/extracellular signal-regulated kinase (ERK) pathways, which are important factors in SSc.

Conclusions: In summary, these data suggest that TAN IIA can reduce SSc-related skin fibrosis by modulating the TGF-β/Smad and MAPK/ERK signalling pathways. More importantly, our results imply that TAN IIA can directly act on the skin fibroblasts of SSc, therefore, inhibiting fibrosis.

Keywords: bleomycin; dermal fibrosis; skin fibroblasts; systemic sclerosis; tanshinone IIA.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Animals
  • Bleomycin / toxicity
  • Cells, Cultured
  • Collagen
  • Disease Models, Animal
  • Endothelial Cells* / metabolism
  • Extracellular Signal-Regulated MAP Kinases / metabolism
  • Fibroblasts
  • Fibrosis
  • Humans
  • Mice
  • Scleroderma, Systemic* / drug therapy
  • Scleroderma, Systemic* / genetics
  • Scleroderma, Systemic* / metabolism
  • Signal Transduction
  • Skin
  • Transforming Growth Factor beta / metabolism

Substances

  • tanshinone
  • Transforming Growth Factor beta
  • Extracellular Signal-Regulated MAP Kinases
  • Bleomycin
  • Collagen