Proinflammatory cytokines driving cardiotoxicity in COVID-19

Cardiovasc Res. 2024 Mar 13;120(2):174-187. doi: 10.1093/cvr/cvad174.

Abstract

Aims: Cardiac involvement is common in patients hospitalized with COVID-19 and correlates with an adverse disease trajectory. While cardiac injury has been attributed to direct viral cytotoxicity, serum-induced cardiotoxicity secondary to serological hyperinflammation constitutes a potentially amenable mechanism that remains largely unexplored.

Methods and results: To investigate serological drivers of cardiotoxicity in COVID-19 we have established a robust bioassay that assessed the effects of serum from COVID-19 confirmed patients on human embryonic stem cell (hESC)-derived cardiomyocytes. We demonstrate that serum from COVID-19 positive patients significantly reduced cardiomyocyte viability independent of viral transduction, an effect that was also seen in non-COVID-19 acute respiratory distress syndrome (ARDS). Serum from patients with greater disease severity led to worse cardiomyocyte viability and this significantly correlated with levels of key inflammatory cytokines, including IL-6, TNF-α, IL1-β, IL-10, CRP, and neutrophil to lymphocyte ratio with a specific reduction of CD4+ and CD8+ cells. Combinatorial blockade of IL-6 and TNF-α partly rescued the phenotype and preserved cardiomyocyte viability and function. Bulk RNA sequencing of serum-treated cardiomyocytes elucidated specific pathways involved in the COVID-19 response impacting cardiomyocyte viability, structure, and function. The observed effects of serum-induced cytotoxicity were cell-type selective as serum exposure did not adversely affect microvascular endothelial cell viability but resulted in endothelial activation and a procoagulant state.

Conclusion: These results provide direct evidence that inflammatory cytokines are at least in part responsible for the cardiovascular damage seen in COVID-19 and characterise the downstream activated pathways in human cardiomyocytes. The serum signature of patients with severe disease indicates possible targets for therapeutic intervention.

Keywords: COVID-19; Cardiotoxicity; Inflammation; Stem cell derived cardiomyocytes.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • COVID-19*
  • Cardiotoxicity
  • Cytokines
  • Humans
  • Interleukin-6
  • Tumor Necrosis Factor-alpha

Substances

  • Cytokines
  • Interleukin-6
  • Tumor Necrosis Factor-alpha