A multi-reservoir extruder for time-resolved serial protein crystallography and compound screening at X-ray free-electron lasers

Nat Commun. 2023 Dec 2;14(1):7956. doi: 10.1038/s41467-023-43523-5.

Abstract

Serial crystallography at X-ray free-electron lasers (XFELs) permits the determination of radiation-damage free static as well as time-resolved protein structures at room temperature. Efficient sample delivery is a key factor for such experiments. Here, we describe a multi-reservoir, high viscosity extruder as a step towards automation of sample delivery at XFELs. Compared to a standard single extruder, sample exchange time was halved and the workload of users was greatly reduced. In-built temperature control of samples facilitated optimal extrusion and supported sample stability. After commissioning the device with lysozyme crystals, we collected time-resolved data using crystals of a membrane-bound, light-driven sodium pump. Static data were also collected from the soluble protein tubulin that was soaked with a series of small molecule drugs. Using these data, we identify low occupancy (as little as 30%) ligands using a minimal amount of data from a serial crystallography experiment, a result that could be exploited for structure-based drug design.

MeSH terms

  • Crystallography
  • Crystallography, X-Ray
  • Electrons*
  • Lasers
  • Proteins* / chemistry
  • Synchrotrons

Substances

  • Proteins