Analysis of biochemical analytes using six sigma metrics with two analyzers at an Indian lab setting

Bioinformation. 2023 Nov 30;19(11):1043-1050. doi: 10.6026/973206300191043. eCollection 2023.

Abstract

A zero defects goal was implemented in the clinical laboratory settings using a six-sigma model. Daily Internal Quality Control (IQC) and external quality control data from April-September 2023 was extracted to calculate the sigma metrics of 21 biochemical analytes based on Total Error Allowable (TEa), % bias and co-efficient of variation percent (CV%). A retrospective comparative study was conducted in the department of Clinical Biochemistry at Kanva Diagnostic Services Pvt. Ltd, Bengaluru, India. The analytical performance of the 21 biochemical analytes was tested on Cobas 6000 and C311 analyzers. Quality Goal Index (QGI) and root cause analysis was calculated to infer the reason for the deviation of six sigma. Method decision charts were plotted to show the comparison of the problem analytes on both the analyzers. On Cobas 6000 at level 1 IQC, out of 21 analytes, 10 analytes showed σ>6 and 10 analytes showed σ 3-6 and on C311, 15 analytes which showed σ>6 and 6 analytes that showed σ 3-6. On Cobas 6000 at level 2 IQC, out of 21 analytes, 12 analytes showed σ>6 and 8 analytes showed σ 3-6 and on C311 17 analytes showed σ>6 and 4 analytes showed σ 3-6. Creatinine failed to meet minimal sigma performance at both levels of IQC on Cobas 6000.

Keywords: Westgard rules; quality goal index; sigma metric.