The market for illicit drugs has been reshaped by the emergence of more than 1100 new psychoactive substances (NPS) over the past decade, posing a major challenge to the forensic and toxicological laboratories tasked with detecting and identifying them. Tandem mass spectrometry (MS/MS) is the primary method used to screen for NPS within seized materials or biological samples. The most contemporary workflows necessitate labor-intensive and expensive MS/MS reference standards, which may not be available for recently emerged NPS on the illicit market. Here, we present NPS-MS, a deep learning method capable of accurately predicting the MS/MS spectra of known and hypothesized NPS from their chemical structures alone. NPS-MS is trained by transfer learning from a generic MS/MS prediction model on a large data set of MS/MS spectra. We show that this approach enables a more accurate identification of NPS from experimentally acquired MS/MS spectra than any existing method. We demonstrate the application of NPS-MS to identify a novel derivative of phencyclidine (PCP) within an unknown powder seized in Denmark without the use of any reference standards. We anticipate that NPS-MS will allow forensic laboratories to identify more rapidly both known and newly emerging NPS. NPS-MS is available as a web server at https://nps-ms.ca/, which provides MS/MS spectra prediction capabilities for given NPS compounds. Additionally, it offers MS/MS spectra identification against a vast database comprising approximately 8.7 million predicted NPS compounds from DarkNPS and 24.5 million predicted ESI-QToF-MS/MS spectra for these compounds.