Synthesis of novel 5-[3-(4-chlorophenyl)-substituted-1,3-dimethylpyrimidine-2,4,6(1 H,3 H,5 H)-trione derivatives as potential anti-diabetic and anticancer agents

Nucleosides Nucleotides Nucleic Acids. 2024;43(7):619-642. doi: 10.1080/15257770.2023.2289479. Epub 2023 Dec 6.

Abstract

In this work, we developed a series of novel 5-[3-(4-chlorophenyl)-substituted-1,3-dimethylpyrimidine-2,4,6(1H,3H,5H)-trione derivatives 4(a-e) via a one-pot multicomponent reaction. The structures of the compounds were confirmed using analytical and spectroscopic techniques. Also, the synthesized compounds were screened for their anti-diabetic activity, cytotoxicity and in silico studies. The activity results suggested that the compound 4e exhibited least IC50 values of 0.055 ± 0.002 µM, 0.050 ± 0.002 µM and 0.009 ± 0.001 µM for α-amylase, α-glucosidase and cytotoxicity respectively. Further, in silico molecular docking results revealed that all the obtained compounds effectively interacted with exo-β-D-glucosaminidase and P38 MAP kinase proteins with good binding energies. In that, 4e compound established the least binding energy of -9.6 and -9.1 kcal/mol, respectively. Moreover, our synthesized compounds were subjected to ADME studies, which suggested that all the synthesized compounds obeyed all five rules with good bioavailability and were suitable as drug leads against anti-diabetic and anticancer treatment.

Keywords: Pyrimidine derivatives; SAR; cytotoxicity; in silico docking and ADME; α-amylase and α-glucosidase.

MeSH terms

  • Animals
  • Antineoplastic Agents* / chemical synthesis
  • Antineoplastic Agents* / chemistry
  • Antineoplastic Agents* / pharmacology
  • Cell Line, Tumor
  • Humans
  • Hypoglycemic Agents* / chemical synthesis
  • Hypoglycemic Agents* / chemistry
  • Hypoglycemic Agents* / pharmacology
  • Molecular Docking Simulation*
  • Molecular Structure
  • Pyrimidines* / chemical synthesis
  • Pyrimidines* / chemistry
  • Pyrimidines* / pharmacology
  • Structure-Activity Relationship
  • alpha-Amylases / antagonists & inhibitors
  • alpha-Amylases / metabolism
  • alpha-Glucosidases / metabolism
  • p38 Mitogen-Activated Protein Kinases / antagonists & inhibitors
  • p38 Mitogen-Activated Protein Kinases / metabolism

Substances

  • Antineoplastic Agents
  • Pyrimidines
  • Hypoglycemic Agents
  • alpha-Glucosidases
  • alpha-Amylases
  • p38 Mitogen-Activated Protein Kinases