Background and aims: Benefits of computer-aided detection (CADe) in detecting colorectal neoplasia were shown in many randomized trials in which endoscopists' behavior was strictly controlled. However, the effect of CADe on endoscopists' performance in less-controlled setting is unclear. This systematic review and meta-analyses were aimed at clarifying benefits and harms of using CADe in real-world colonoscopy.
Methods: We searched MEDLINE, EMBASE, Cochrane, and Google Scholar from inception to August 20, 2023. We included nonrandomized studies that compared the effectiveness between CADe-assisted and standard colonoscopy. Two investigators independently extracted study data and quality. Pairwise meta-analysis was performed utilizing risk ratio for dichotomous variables and mean difference (MD) for continuous variables with a 95% confidence interval (CI).
Results: Eight studies were included, comprising 9782 patients (4569 with CADe and 5213 without CADe). Regarding benefits, there was a difference in neither adenoma detection rate (44% vs 38%; risk ratio, 1.11; 95% CI, 0.97 to 1.28) nor mean adenomas per colonoscopy (0.93 vs 0.79; MD, 0.14; 95% CI, -0.04 to 0.32) between CADe-assisted and standard colonoscopy, respectively. Regarding harms, there was no difference in the mean non-neoplastic lesions per colonoscopy (8 studies included for analysis; 0.52 vs 0.47; MD, 0.14; 95% CI, -0.07 to 0.34) and withdrawal time (6 studies included for analysis; 14.3 vs 13.4 minutes; MD, 0.8 minutes; 95% CI, -0.18 to 1.90). There was a substantial heterogeneity, and all outcomes were graded with a very low certainty of evidence.
Conclusion: CADe in colonoscopies neither improves the detection of colorectal neoplasia nor increases burden of colonoscopy in real-world, nonrandomized studies, questioning the generalizability of the results of randomized trials.
Keywords: ADR; Adenoma; Artificial Intelligence; CADe; Colonoscopy.
Copyright © 2024 AGA Institute. Published by Elsevier Inc. All rights reserved.