Recently, aqueous zinc-ion batteries (ZIBs) have become increasingly attractive as grid-scale energy storage solutions due to their safety, low cost, and environmental friendliness. However, severe dendrite growth, self-corrosion, hydrogen evolution, and irreversible side reactions occurring at Zn anodes often cause poor cyclability of ZIBs. This work develops a synergistic strategy to stabilize the Zn anode by introducing a molybdenum dioxide coating layer on Zn (MoO2@Zn) and Tween 80 as an electrolyte additive. Due to the redox capability and high electrical conductivity of MoO2, the coating layer can not only homogenize the surface electric field but also accommodate the Zn2+ concentration field in the vicinity of the Zn anode, thereby regulating Zn2+ ion distribution and inhibiting side reactions. MoO2 coating can also significantly enhance surface hydrophilicity to improve the wetting of electrolyte on the Zn electrode. Meanwhile, Tween 80, a surfactant additive, acts as a corrosion inhibitor, preventing Zn corrosion and regulating Zn2+ ion migration. Their combination can synergistically work to reduce the desolvation energy of hydrated Zn ions and stabilize the Zn anodes. Therefore, the symmetric cells of MoO2@Zn∥MoO2@Zn with optimal 1 mM Tween 80 additive in 1 M ZnSO4 achieve exceptional cyclability over 6000 h at 1 mA cm-2 and stability (>700 h) even at a high current density (5 mA cm-2). When coupling with the VO2 cathode, the full cell of MoO2@Zn∥VO2 shows a higher capacity retention (82.4%) compared to Zn∥VO2 (57.3%) after 1000 cycles at 5 A g-1. This study suggests a synergistic strategy of combining surface modification and electrolyte engineering to design high-performance ZIBs.
Keywords: MoO2 coating layer; Tween 80 additive; Zn anodes; Zn-ion batteries; corrosion inhibitor.