Folic acid-functionalized chitosan nanoparticles with bioenzyme activity for the treatment of spinal cord injury

Eur J Pharm Sci. 2024 Jan 1:192:106667. doi: 10.1016/j.ejps.2023.106667. Epub 2023 Dec 6.

Abstract

Spinal cord injury (SCI) is a central system disease with a high rate of disability. Pathological changes such as ischemia and hypoxia of local tissues, oxidative stress and apoptosis could lead to limb pain, paralysis and even life-threatening. It was reported that catalase (CAT) was the main antioxidant in organisms, which could remove reactive oxygen species (ROS) and release oxygen (O2). However, the efficacy of the drug is largely limited due to its poor stability, low bioavailability and inability to cross the blood spinal cord barrier (BSCB). Therefore, in this study, we prepared folic acid-functionalized chitosan nanoparticles to deliver CAT (FA-CSNCAT) for solving this problem. In vivo small animal imaging results showed that FA-CSN could carry CAT across the BSCB and target to the inflammatory site. In addition, Immunofluorescence, ROS assay and JC-1 probe were used to detect the therapeutic effect of FA-CSNCAT in vitro and in vivo. The results showed that FA-CSNCAT could alleviate the hypoxic environment at the injured site and remove ROS, thereby inhibiting oxidative stress and protecting neurons, which may provide a new idea for clinical medication of SCI.

Keywords: Apoptosis; Hypoxia; Oxidative stress; Spinal cord injury.

MeSH terms

  • Animals
  • Chitosan* / therapeutic use
  • Nanoparticles*
  • Rats
  • Rats, Sprague-Dawley
  • Reactive Oxygen Species
  • Spinal Cord Injuries* / drug therapy
  • Spinal Cord Injuries* / pathology

Substances

  • Chitosan
  • Reactive Oxygen Species