Introduction: The first step-down defibrillation studies in the subcutaneous implantable cardioverter-defibrillator (S-ICD) described a defibrillation threshold (DFT) of 32.5 ± 17.0 J and 36.6 ± 19.8 J. Therefore, the default shock output of the S-ICD was set at 80 J. In de novo implants, the DFT is lower in optimally positioned S-ICDs. However, a retrospective analysis raised concerns about a high DFT in S-ICD replacements, possibly related to fibrosis.
Objective: We aimed to find the DFT in patients undergoing S-ICD generator replacement.
Methods: This prospective study enrolled patients who underwent S-ICD generator replacement with subsequent defibrillation testing. A pre-specified defibrillation testing protocol was used to determine the DFT, defined as the lowest shock output that effectively terminated the induced ventricular arrhythmia.
Results: A total of 45 patients were enrolled, 6.0 ± 2.1 years after initial implant. Mean DFT during replacement in the total cohort was 27.4 ± 14.3 J. In patients with a body mass index (BMI) 18.5-25 kg/m2 (N = 22, BMI 22.5 ± 1.6), median DFT was 20 J (IQR 17.5-30). In 18/22 patients, the DFT was ≤30 J and 5/22 patients were successfully defibrillated at 10 J. One patient with hypertrophic cardiomyopathy had a DFT of 65 J. In patients with a BMI >25 kg/m2 (N = 23, BMI 29.5 ± 4.2), median DFT was 30 J (IQR 20-40). In 15/23 patients, the DFT was ≤30 J and 4/23 patients had a successful defibrillation test at 10 J.
Conclusions: This study eases concerns about a high DFT after S-ICD generator replacement. The majority of patients had a DFT ≤30 J, regardless of BMI, suggesting that the shock output of the S-ICD could be safely reduced.
Keywords: Defibrillation threshold; Impedance; Pulse generator; Subcutaneous ICD.
Copyright © 2023 The Author(s). Published by Elsevier B.V. All rights reserved.