Upregulation of Platelet-Activating Factor Receptor Expression and Lyso-Platelet-Activating Factor Isoforms in Human Nasal Polyp Tissues

J Clin Med. 2023 Nov 28;12(23):7357. doi: 10.3390/jcm12237357.

Abstract

Background: The Platelet-Activating Factor (PAF)/receptor (PAFR) system is involved in asthma and allergic rhinitis; however, its role in chronic rhinosinusitis (CRS) is still unclear. This study aimed to assess the expression of PAFR and the concentration of Lyso-PAF isoforms in the nasal polyps (NP) of patients suffering from CRS with/without comorbidities such as asthma and NSAID-exacerbated respiratory disease (N-ERD) compared to healthy nasal mucosa (NM) from control subjects.

Methods: NM (n = 8) and NP tissues were obtained from patients undergoing surgery for septal deviation/turbinate hypertrophy or endoscopic sinus surgery, respectively. Three phenotypes were studied: CRSwNP with no asthma (n = 6), CRSwNP with non-steroidal anti-inflammatory drug (NSAID)-tolerant asthma (n = 6), and CRSwNP with NSAID-exacerbated respiratory disease (n = 6). PAFR protein and mRNA were assessed via immunochemistry, immunofluorescence, Western blot, and real-time quantitative PCR. Lyso-PAF isoforms (C16, C18, and C18:1) were quantified via mass spectrometry.

Results: PAFR protein was expressed in the NM and NP, concretely in epithelial cells and submucosal glands. Compared to NM, PAFR mRNA expression was higher in all NP phenotypes (p < 0.05) while all Lyso-PAF isoform concentrations were higher in the NP from asthmatic patients (p < 0.05). Lyso-PAF C16 and C18 concentrations were higher in the NP from asthmatic patients than in the NP from patients without asthma.

Conclusions: The PAF/PAFR system could play a pathophysiological role in CRSwNP pathogenesis.

Keywords: Lyso-PAF; NSAID-exacerbated respiratory disease; asthma; chronic rhinosinusitis with nasal polyps; platelet-activating factor; platelet-activating factor receptor.