The demand for respiratory disease and dynamic breathing studies has continuously driven researchers to update the pulmonary bronchial tree's morphology model. This study aims to construct a bronchial tree morphology model efficiently and effectively with practical algorithms. We built a performance index system using failure branch rate, volume ratio, and coefficient of variation of terminal volumes to evaluate the model performance. We optimized the parameter settings and found the best options to build the morphology model, and we constructed a 14th-generation bronchial tree model with a decent performance index. The dimensions of our model closely matched published data from anatomic in vitro measurements. The proposed model is adjustable and computable and will be used in future dynamic breathing simulations and respiratory disease studies.
Keywords: bronchial tree; model organisms; morphology model; pulmonary disease; respiratory disease.
Copyright © 2023 Liu, Qiu, Li, Chen, Kang and Ruan.