Intramolecular donor-stabilized tetra-coordinated germanium(iv) di-cations and their Lewis acidic properties

Chem Sci. 2023 Nov 16;14(47):13755-13764. doi: 10.1039/d3sc03717g. eCollection 2023 Dec 6.

Abstract

We report the first examples of intramolecular phosphine-stabilized tetra-coordinated germanium(iv) di-cationic compounds: [LiPr2Ge][CF3SO3]23iPr and [LPh2Ge][CF3SO3]23Ph (LiPr = 6-(diisopropylphosphanyl)-1,2-dihydroacenaphthylene-5-ide; LPh = 6-(diphenylphosphanyl)-1,2-dihydroacenaphthylene-5-ide). The step wise synthetic strategy involves the isolation of neutral and mono-cationic Ge(iv) precursors: [LiPr2GeCl][X] (X = GeCl31iPr, OTf 2iPr), [LPh2GeCl2] 1Ph and [LPh2GeCl][OTf] 2Ph. Both 3iPr and 3Ph exhibit constrained spiro-geometry. DFT studies reveal the dispersion of di-cationic charges over P-Ge-P sites. Anion or Lewis base binding occurs at the Ge site resulting in relaxed distorted trigonal bipyramidal/tetrahedral geometry. 3iPr and 3Ph activate the Si-H bond initially at the P-site. The hydride ultimately migrates to the Ge-site rapidly giving [LPh2GeH][CF3SO3] 3PhH, while sluggishly forming [LiPr2GeH][CF3SO3] 3iPrH. Compounds 3iPr and 3Ph were tested as catalysts for the hydrosilylation of aromatic aldehydes. While catalytic hydrosilylation proceeded via the initial Et3Si-H bond activation in the case of 3iPr, compound 3Ph as a catalyst showed a masked Frustrated Lewis Pair (FLP) type reactivity in the catalytic cycle.