Deciphering Reaction Products in Formamidine-Based Perovskites with Methylammonium Chloride Additive

J Am Chem Soc. 2023 Dec 20;145(50):27900-27910. doi: 10.1021/jacs.3c12755. Epub 2023 Dec 11.

Abstract

The fabrication of formamidinium lead iodide (FAPbI3) perovskite solar cells (PSCs) involves the addition of methylammonium chloride (MACl) to promote low-temperature α-phase formation and grain growth. However, as the added MACl deprotonates and volatilizes into methylamine (MA0) and HCl for removal, MA0 can chemically interact with formamidinium (FA+), forming methyl formamidinium (MFA+) as a byproduct. Despite its significance, the chemical interactions among FAPbI3 perovskites, MACl additives, and their byproducts remain poorly understood. Our findings reveal that the FA+ and MA0 reaction primarily yields a mixture of cis/trans-N-methyl formamidinium iodide (MFAI) isomers, with cis-MFAI prevailing as the dominant species. Moreover, MFAI subsequently reacts with PbI2 to yield fully formed cis-MFAPbI3 2H-phase perovskite. We elucidated the effects of MFAI on the crystal growth, phase stability, and band gap of formamidine-based perovskites through the growth of single crystals. This research offers valuable insights into the role of these byproducts in influencing the efficiency and long-term stability of future PSCs.