Differential Corticospinal Excitability and Cortical Functional Connectivity Modulation by Spinal Cord Transcutaneous Stimulation-based Motor Training versus Motor Training alone in Able-bodied and SCI participants: A Multiple Case Study

Annu Int Conf IEEE Eng Med Biol Soc. 2023 Jul:2023:1-4. doi: 10.1109/EMBC40787.2023.10340957.

Abstract

Spinal cord transcutaneous stimulation (scTS) has shown its potential for boosting motor, sensory, and autonomic function recovery after a spinal cord injury. Despite the demonstrated benefits, little is known about the exact neuromodulatory mechanisms triggered by scTS and the cortex involvement in the beneficial effects observed. Here, we examine the effects of scTS-based motor training and motor training alone on sensorimotor cortical functional connectivity and corticospinal excitability in able-bodied and SCI participants.Clinical Relevance- The results show preliminary evidence of differential cortical involvement and modulation by scTS-based motor training in uninjured and spinal-cord injured individuals. A better understanding of scTS mechanisms of action could help optimize the intervention design and potentiate its benefits.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Humans
  • Recovery of Function / physiology
  • Sensorimotor Cortex*
  • Spinal Cord Injuries*
  • Spinal Cord Stimulation* / methods