Objective: The objective of this study is to study the adjunct role of combining DNA aneuploidy analysis with radial endobronchial ultrasound (R-EBUS)-guided sampling for diagnosis of peripheral lung lesions (PPLs).
Method: A single-center prospective study was conducted in patients undergoing R-EBUS-guided sampling for PPLs. DNA image cytometry (DNA-ICM) was used to analyze DNA aneuploidy in bronchial washing from the bronchial segment of the PPL. Clinical information, R-EBUS data, pathology, DNA-ICM results, and follow-up data were analyzed. Sensitivity, specificity, and predictive values for R-EBUS-guided sampling, DNA-ICM, and the two methods combined were measured. Binary logistic regression was performed to determine influencing factors on diagnostic positivity rate. Receiver operating characteristic (ROC) curve analysis was used to determine the optimal cutoff point for DNA-ICM.
Results: A total of 101 patients were enrolled. Sixty-four (63.4%) patients had confirmed malignant tumor, of whom 33 were confirmed by R-EBUS-guided sampling (biopsy and/or bronchial brush and wash cytology), and 31 by surgery or percutaneous lung biopsy. Thirty-seven patients were finally considered to have benign lesions, based on clinical information and 1-year follow-up. The sensitivity for malignant disease was 51.6% by R-EBUS, and specificity was 100%. DNA-ICM had a sensitivity of 67.2% and a specificity of 86.5%. When combining the two methods, sensitivity increased to 78.1% and specificity was 86.5%. Lesion size and whether the R-EBUS probe was located in the lesion were significantly associated with positivity rate of the combined methods. The optimal cutoff point for DNA-ICM was 5c for max DNA content, and 1 for aneuploid cell count (sensitivity 67.2%, specificity 86.5%, accuracy 63.4%).
Conclusion: In malignant PPLs, DNA-ICM combined with R-EBUS-guided sampling can improve diagnostic positivity compared with either method alone.
Keywords: DNA aneuploidy; DNA image cytometry; lung cancer diagnosis; peripheral lung lesions; radial endobronchial ultrasound.
© 2023 The Authors. The Clinical Respiratory Journal published by John Wiley & Sons Ltd.