Objective: The main purpose of this study was to explore the diagnostic performance of the Ca∗Cl/P ratio for primary hyperparathyroidism (PHPT), especially normocalcaemic PHPT (NPHPT), to assist health care providers in making reliable and rapid clinical identifications.
Methods: From January 1, 2013, to March 31, 2023, 230 PHPT patients, including 65 with NPHPT and 230 sex- and age-matched controls, were enrolled in this retrospective study. Differences between hypercalcaemic PHPT (HPHPT) and NPHPT and between them and their respective controls were analyzed. The diagnostic accuracy of the Ca∗Cl/P ratio, Ca/P ratio, Cl/P ratio and albumin-corrected calcium was assessed by the area under the receiver operating characteristic curve.
Results: Compared with corresponding controls, NPHPT and HPHPT patients both had significantly higher Ca ∗ Cl/P ratios (271.64 ± 51.74 vs 192.71 ± 26; 419.91 ± 139.11 vs 199.14 ± 36.75, P < .001). In the overall cohort, the ROC-AUC of the Ca∗Cl/P ratio (0.964, 95% CI = 0.943-0.979) for diagnosis of PHPT patients was superior to albumin-corrected calcium (0.959, 95% CI = 0.934-0.973), the Ca/P ratio (0.956, 95% CI = 0.934-0.973), and the Cl/P ratio (0.923, 95% CI = 0.895-0.946). A Ca ∗ Cl/P ratio above 239.17 mmol/L, with sensitivity (0.952), specificity (0.922), PPV (0.924), NPV (0.951) and accuracy (0.937), can distinguish PHPT patients from healthy individuals. Furthermore, the Ca ∗ Cl/P ratio yielded a sensitivity of 0.831, specificity of 0.938, PPV of 0.931, NPV of 0.847 and accuracy of 0.885 for NPHPT.
Conclusion: The Ca∗Cl/P ratio provides excellent diagnostic power for diagnosis of PHPT, especially NPHPT.
Keywords: calcium; chlorine; diagnosis; normocalcaemia; phosphorus; primary hyperparathyroidism.
Copyright © 2023 AACE. Published by Elsevier Inc. All rights reserved.