Detection of infections in wildlife species is increasingly important to reduce the risk of spreading zoonotic and economically important parasites, understand disease epidemiology and promote the conservation of wildlife species. Serological tests are key in disease diagnosis and surveillance by detecting immunoglobulins against infectious agents. However, the need for species-specific reagents has limited the application of serological tests in wildlife species. This study evaluated the serum immunoglobulin-binding capability of polyclonal anti-kangaroo antibody and two non-species-specific reagents, including protein A/G and protein L, with the largest range of Australian marsupial species so far, including 32 species representing three major marsupial orders. Immunoglobulin-binding capability was assessed using immunoblotting, enzyme-linked immunosorbent assay and Western blot techniques. Variation in immunoglobulin-binding capability was observed between the three reagents and across the species tested, both across but also within taxonomic groups. Taxonomic distance was thus not always a good predictor of immunoglobulin-binding affinity, emphasizing the need to validate these reagents for each species separately. However, all three reagents bound with the serum immunoglobulins of most marsupial species tested. The findings of this study provide a valuable reference for species differences in affinity to protein A/G, protein L and anti-kangaroo antibody, assisting in the selection of appropriate reagents and the development of sero-immunological assays in Australian marsupials.
Copyright: © 2023 Liyanage et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.