Impacts of hydropeaking: A systematic review

Sci Total Environ. 2024 Feb 20:912:169251. doi: 10.1016/j.scitotenv.2023.169251. Epub 2023 Dec 13.

Abstract

Hydropower is commonly considered a renewable energy source. Nevertheless, this does not imply an absence of impacts on the riverine ecosystem, the extent of which is expected to increase in the coming years due to the energy transition from fossil fuels to renewable sources and for the climate change. A common consequence of hydroelectric power generation is hydropeaking, which causes rapid and frequent fluctuations in the water flow downstream of hydropower plants. The review incorporates 155 relevant studies published up until November 2023 and follows a systematic review method, Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA), which is a multi-stage systematic procedure for the identification and selection of research documents. The selected studies highlighted several prominent impacts of hydropeaking on aquatic environments. The primary effects include alterations in flow patterns, modification of water temperature, changes in sediment dynamics and fluctuations in dissolved gas levels. These alterations have been found to affect various aspects of aquatic ecosystems, including fish growth, behavior, reproductive success, habitat, and migration patterns, and benthic macroinvertebrate communities. Furthermore, hydropeaking can also lead to habitat fragmentation, erosion, and loss of riparian vegetation, thereby impacting terrestrial ecosystems that depend on the aquatic environment. Despite the body of literature reviewed, several knowledge gaps were identified, underscoring the need for further research. There is limited understanding of the long-term ecological consequences of hydropeaking and its cumulative effects on aquatic ecosystems. Additionally, there is lack of consensus regarding the quantification of ecosystem services, economic impact, soil moisture content, and weighted usable area due to flow fluctuation and global evolution of energy production from renewable energy sources. Addressing the identified research gaps is crucial for achieving a balance between energy production and the conservation of freshwater ecosystems in the context of a rapidly changing global climate.

Keywords: Ecology; Flow fluctuations; Hydropeaking; PRISMA; Sediment connectivity; Thermopeaking.

Publication types

  • Systematic Review
  • Review

MeSH terms

  • Animals
  • Ecosystem*
  • Fishes
  • Power Plants*
  • Renewable Energy
  • Water

Substances

  • Water