Fluorescent properties in solid-state and solution of novel tricyclic derivatives of chloro/bromophenylchromanones and 2-methylpyrazoline

Spectrochim Acta A Mol Biomol Spectrosc. 2024 Mar 5:308:123715. doi: 10.1016/j.saa.2023.123715. Epub 2023 Dec 2.

Abstract

In this work, we reported the synthesis and spectroscopic characterization of seven novel tricyclic compounds resulting from the reaction of 3-benzylidenechromanone with Cl or Br substituent in different positions and without halogen with methylhydrazine. The structural characterization of compounds was done through different techniques i.e., FTIR,1HNMR,a single and powder X-Ray diffraction. Moreover, fluorescence quantum yield and lifetime assessed their fluorescent properties in the solid state and various solvents. Derivatives with Cl or Br substituent in positions 2 and 4 are isostructural. 4-Cl, 4-Br and 3-Cl compounds exhibit fluorescence with moderate efficiency (quantum yield 0.11-0.26) in solid state due to specific arrangements, so-called π-stack brick stone with head-to-tail self-assembly. Other crystalline compounds (2-Cl, 2-Br and 3-Br) that exhibit negligible fluorescence quantum yield have crossed V-type arrangement. In the solution, the nonhalogenated compound shows the best fluorescence efficiency. In turn, the presence of halogen atoms results in fluorescence decreasing. TD-DFT study revealed that unsubstituted compound higher emissive in solution has a different electron density distribution at HOMO and LUMO levels than less emissive substituted compounds (A3 and A3).