Transition metals like Zn are essential for all organisms including bacteria, but fluctuations of their concentrations in the cell can be lethal. Organisms have thus evolved complex mechanisms for cellular metal homeostasis. One mechanistic paradigm involves pairs of transcription regulators sensing intracellular metal concentrations to regulate metal uptake and efflux. Here we report that Zur and ZntR, a prototypical pair of regulators for Zn uptake and efflux in E. coli , respectively, can coordinate their regulation through DNA, besides sensing cellular Zn 2+ concentrations. Using a combination of live-cell single-molecule tracking and in vitro single-molecule FRET measurements, we show that unmetallated ZntR can enhance the unbinding kinetics of Zur from DNA by directly acting on Zur-DNA complexes, possibly through forming heteromeric ternary and quaternary complexes that involve both protein-DNA and protein-protein interactions. This 'through-DNA' mechanism may functionally facilitate the switching in Zn uptake regulation when bacteria encounter changing Zn environments; it could also be relevant for regulating the uptake-vs.-efflux of various metals across different bacterial species and yeast.