Ulcerative colitis (UC) is a type of inflammatory bowel disease (IBD) that cannot be completely cured by current treatments. C. nudiflora Hook has antibacterial, anti-inflammatory, and hemostatic biological functions; however, the therapeutic role of C. nudiflora Hook or its extracts in IBD remains poorly understood. In this study, we extracted and purified three fractions of C. nudiflora Hook polysaccharides by hydroalcohol precipitation method, which were named as CNLP-1, CNLP-2 and CNLP-3, respectively. CNLP-2, the main component of the polysaccharides of C. nudiflora Hook is an pyranose type acidic polysaccharide composed of Fuc, Rha, Ara, Gal, Glc, Xyl, Man, Gal-UA and Glc-UA, with an Mn of 15.624 kDa; Mw of 31.375 kDa. CNLP-2 was found to have a smooth lamellar structure as observed by scanning electron microscopy. To investigate the effect of CNLP-2 (abbreviated to CNLP) on dextran sodium sulfate (DSS)-induced UC mice and its mechanism of action, we treated DSS-induced UC mice by administering CNLP at a dose of 100 mg/kg every other day. The results of the study showed that CNLP alleviated the clinical symptoms such as body weight (BW) loss, pathological damage, and systemic inflammation. The mechanism may be through the regulation of intestinal flora and its metabolism, which in turn affects the expression of NF-κB/MAPK pathway-related proteins through the metabolites of intestinal flora to further alleviate inflammation and ultimately improve the intestinal barrier function in UC mice. In conclusion, CNLP has great potential for the treatment of IBD.
Keywords: C. nudiflora Hook; DSS; Intestinal barrier; Polysaccharides; Ulcerative colitis.
Copyright © 2023 Elsevier B.V. All rights reserved.