Bioactive Glass and Silica Particles for Skeletal and Cardiac Muscle Tissue Regeneration

Tissue Eng Part B Rev. 2024 Aug;30(4):448-461. doi: 10.1089/ten.TEB.2023.0277. Epub 2024 Feb 20.

Abstract

When skeletal and cardiac tissues are damaged, surgical approaches are not always successful and tissue regeneration approaches are investigated. Reports in the literature indicate that silica nanoparticles and bioactive glasses (BGs), including silicate bioactive glasses (e.g., 45S5 BG), phosphate glass fibers, boron-doped mesoporous BGs, borosilicate glasses, and aluminoborates, are promising for repairing skeletal muscle tissue. Silica nanoparticles and BGs have been combined with polymers to obtain aligned nanofibers and to maintain controlled delivery of nanoparticles for skeletal muscle repair. The literature indicates that cardiac muscle regeneration can be also triggered by the ionic products of BGs. This was observed to be due to the release of vascular endothelial growth factor and other growth factors from cardiomyocytes, which regulate endothelial cells to form capillary structures (angiogenesis). Specific studies, including both in vitro and in vivo approaches, are reviewed in this article. The analysis of the literature indicates that although the research field is still very limited, BGs are showing great promise for muscle tissue engineering and further research in the field should be carried out to expand our basic knowledge on the application of BGs in muscle (skeletal and cardiac) tissue regeneration. Impact statement This review highlights the potential of silica particles and bioactive glasses (BGs) for skeletal and cardiac tissue regeneration. These biomaterials create scaffolds triggering muscle cell differentiation. Ionic products from BGs stimulate growth factors, supporting angiogenesis in cardiac tissue repair. Further research is required to expand our know-how on silica particles and BGs in muscle tissue engineering.

Keywords: bioactive glass; borate glass; cardiac muscle; phosphate glasses; silica nanoparticles; skeletal muscle.

Publication types

  • Review

MeSH terms

  • Animals
  • Biocompatible Materials / chemistry
  • Biocompatible Materials / pharmacology
  • Glass* / chemistry
  • Humans
  • Muscle, Skeletal* / physiology
  • Myocardium* / cytology
  • Myocardium* / metabolism
  • Nanoparticles / chemistry
  • Regeneration* / drug effects
  • Silicon Dioxide* / chemistry
  • Tissue Engineering / methods

Substances

  • Silicon Dioxide
  • Biocompatible Materials