Aim: To develop an optimized approach for encapsulating a 2-alkylthioimidazolone-based copper coordination compound within liposomes, which could offer treatment of cancer and bacterial infections by reactive oxygen species generation toxicity mechanisms. Materials & methods: For drug-loaded liposome preparation, lipids and drug mixture in organic solvents was injected into copper salt solution, forming a coordination compound simultaneously embedded in the lipid bilayer. In vitro tests were performed on MCF7 and MDA-MB-231 breast cancer cells. Results: Liposomes had a loading capacity of up to 1.75% (molar drug-to-lipid ratio). In vitro tests showed increased viability and accumulation of the liposomal formulation compared with free drug as well as lack of cytotoxicity in hepatocytes. Conclusion: This optimized technique for encapsulating large copper complexes in liposomes could be used to improve their delivery and better treat cancer and bacterial infections.
Keywords: antibacterial therapy; copper coordination compound; drug delivery; liposomes; triple-negative breast cancer.
This work introduces a new technique for copper-containing drugs encapsulation in a drug-delivery system. The drug, a promising copper compound, is embedded in lipid nanovesicles – tiny fat particles – for intravenous injection. In addition to chemical characterization of the obtained drug form, tests on cancer cells showed a noticeable effect, whereas healthy cell types were not harmed. Copper possesses not only anticancer effects but also antimicrobial properties, which are also shown by the drug form, and a test of combined suppression of cancer cell lines and bacteria was successful. Hence, the obtained drug form has the potential for dual treatment of cancer and bacterial infections.