Quantitative Proteomics Analysis Reveals the Effect of a MarR Family Transcriptional Regulator AHA_2124 on Aeromonas hydrophila

Biology (Basel). 2023 Nov 28;12(12):1473. doi: 10.3390/biology12121473.

Abstract

The transcriptional regulators of the MarR family play an important role in diverse bacterial physiologic functions, whereas their effect and intrinsic regulatory mechanism on the aquatic pathogenic bacterium Aeromonas hydrophila are, clearly, still unknown. In this study, we firstly constructed a deletion strain of AHA_2124AHA_2124) of a MarR family transcriptional regulator in Aeromonas hydrophila ATCC 7966 (wild type), and found that the deletion of AHA_2124 caused significantly enhanced hemolytic activity, extracellular protease activity, and motility when compared with the wild type. The differentially abundant proteins (DAPs) were compared by using data-independent acquisition (DIA), based on a quantitative proteomics technology, between the ΔAHA_2124 strain and wild type, and there were 178 DAPs including 80 proteins up-regulated and 98 proteins down-regulated. The bioinformatics analysis showed that the deletion of gene AHA_2124 led to some changes in the abundance of proteins related to multiple biological processes, such as translation, peptide transport, and oxidation and reduction. These results provided a theoretical basis for better exploring the regulatory mechanism of the MarR family transcriptional regulators of Aeromonas hydrophila on bacterial physiological functions.

Keywords: Aeromonas hydrophila; MarR family transcriptional regulator; biological function.