Ideal regeneration of hard tissue and dental pulp has been reported with the use of a combination of bioactive glass and basic fibroblast growth factor (bFGF). However, no previous study has investigated the molecular mechanisms underlying the processes induced by this combination in dental pulp cells. This study aimed to examine the cellular phenotype and transcriptional changes induced by the combination of bioactive glass solution (BG) and bFGF in dental pulp cells using phase-contrast microscopy, a cell counting kit-8 assay, alkaline phosphatase staining, and RNA sequence analysis. bFGF induced elongation of the cell process and increased the number of cells. Whereas BG did not increase ALP activity, it induced extracellular matrix-related genes in the dental pulp. In addition, the combination of BG and bFGF induces gliogenesis-related genes in the nervous system. This is to say, bFGF increased the viability of dental pulp cells, bioactive glass induced odontogenesis, and a dual stimulation with bioactive glass and bFGF induced the wound healing of the nerve system in the dental pulp. Taken together, bioactive glass and bFGF may be useful for the regeneration of the dentin-pulp complex.
Keywords: basic fibroblast growth factor; bioactive glasses; dental pulp cells.