Our purpose was to characterize the pattern of B cell subsets in children with a combined diagnosis of type 1 diabetes (T1D) and celiac disease (C) since children with single or double diagnosis of these autoimmune diseases may differ in peripheral B cell subset phenotype patterns. B cells were analyzed with flow cytometry for the expression of differentiation/maturation markers to identify transitional, naive, and memory B cells. Transitional (CD24hiCD38hiCD19+) and memory Bregs (mBregs; CD24hiCD27+CD19+, CD1d+CD27+CD19+, and CD5+CD1d+CD19+) were classified as B cells with regulatory capacity. Children with a combined diagnosis of T1D and C showed a pattern of diminished peripheral B cell subsets. The B cells compartment in children with combined diagnosis had higher percentages of memory B subsets and Bregs, including activated subsets, compared to children with either T1D or C. Children with combined diagnosis had a lower percentage of naive B cells (CD27-CD19+; IgD+CD19+) and an increased percentage of memory B cells (CD27+CD19+; IgD-CD19+). A similar alteration was seen among the CD39+ expressing naive and memory B cells. Memory Bregs (CD1d+CD27+CD19+) were more frequent, contrary to the lower percentage of CD5+ transitional Bregs in children with a combined diagnosis. In children with either T1D or C, the peripheral B cell compartment was dominated by naive cells. Differences in the pattern of heterogeneous peripheral B cell repertoire subsets reflect a shifting in the B cell compartment between children with T1D and/or C. This is an immunological challenge of impact on the pathophysiology of these autoimmune diseases.
Keywords: B cell subsets; celiac disease; children; flow cytometry; type 1 diabetes.
© The Author(s) 2023. Published by Oxford University Press on behalf of the British Society for Immunology.