Endophytic fungi improved wheat resistance to Rhopalosiphum padi by decreasing its feeding efficiency and population fitness

Ecotoxicol Environ Saf. 2024 Jan 15:270:115865. doi: 10.1016/j.ecoenv.2023.115865. Epub 2023 Dec 21.

Abstract

The improvement of crop resistance to insect using endophytic fungi is an environmentally friendly and sustainable strategy for agricultural pest control. Clarifying the efficacy and mechanism of endophytic fungi in improving crop resistance to pest offers the opportunity for biological control. In this study, changes in the transcriptome and defense compounds of wheat inoculated with endophytic fungal strains (i.e., YC and BB) were evaluated, and the efficacy of endophytic fungi in improving wheat resistance to Rhopalosiphum padi was studied. The results showed that the numbers of upregulated differentially-expressed genes (DEGs) in wheat plants inoculated with endophytic fungal strains YC and BB were higher than those of the downregulated DEGs, irrespective of R. padi infestation. Defense-related metabolic pathways, such as plant hormone signal transduction and secondary metabolite biosynthesis pathways were significantly enriched. Endophytic fungal strains YC and BB significantly increased jasmonic acid, DIMBOA (2,4-dihydroxy-7-methoxy-1,4-benzoxazin-3-one), total flavone, and tannin contents in wheat plants (P < 0.05) but decreased salicylic acid content. Variations in the contents of defense compounds were significantly correlated with decreased feeding, development, and reproduction of R. padi fed on wheat plants inoculated with strains YC and BB (|r| = 0.68-0.91, P < 0.05). The results suggested that endophytic fungi significantly decreased the feeding efficiency and population fitness [YC: (-11.13%) - (-22.07%); BB: (-10.98%) - (-22.20%)] of R. padi by altering the phytohormone pathway and secondary metabolite biosynthesis in wheat plants. This study helps in understanding of the efficacy of endophytic fungi in improving wheat resistance to insect and will be conducive to integrated pest management.

Keywords: Biological control; Defense compound contents; Endophyte; Plant-microbe interaction; Transcriptome.

MeSH terms

  • Fungi / physiology
  • Genetic Fitness*
  • Plant Growth Regulators
  • Triticum*

Substances

  • Plant Growth Regulators