Fate of Quasiparticles at High Temperature in the Correlated Metal Sr_{2}RuO_{4}

Phys Rev Lett. 2023 Dec 8;131(23):236502. doi: 10.1103/PhysRevLett.131.236502.

Abstract

We study the temperature evolution of quasiparticles in the correlated metal Sr_{2}RuO_{4}. Our angle resolved photoemission data show that quasiparticles persist up to temperatures above 200 K, far beyond the Fermi liquid regime. Extracting the quasiparticle self-energy, we demonstrate that the quasiparticle residue Z increases with increasing temperature. Quasiparticles eventually disappear on approaching the bad metal state of Sr_{2}RuO_{4} not by losing weight but via excessive broadening from super-Planckian scattering. We further show that the Fermi surface of Sr_{2}RuO_{4}-defined as the loci where the spectral function peaks-deflates with increasing temperature. These findings are in semiquantitative agreement with dynamical mean field theory calculations.