Betula pendula Leaf Extract Targets the Interplay between Brain Oxidative Stress, Inflammation, and NFkB Pathways in Amyloid Aβ1-42-Treated Rats

Antioxidants (Basel). 2023 Dec 13;12(12):2110. doi: 10.3390/antiox12122110.

Abstract

Alzheimer's disease (AD) is known as the primary and most common cause of dementia in the middle-aged and elderly population worldwide. Chemical analyses of B. pendula leaf extract (BPE), performed using spectrophotometric and chromatographic methods (LC/MS), revealed high amounts of polyphenol carboxylic acids (gallic, chlorogenic, caffeic, trans-p-coumaric, ferulic, and salicylic acids), as well as flavonoids (apigenin, luteolin, luteolin-7-O-glucoside, naringenin, hyperoside, quercetin, and quercitrin). Four groups of Wistar rats were used in this experiment (n = 7/group): control (untreated), Aβ1-42 (2 μg/rat intracerebroventricular (i.c.v.), Aβ1-42 + BPE (200 mg/Kg b.w.), and DMSO (10 μL/rat). On the first day, one dose of Aβ1-42 was intracerebroventricularly administered to animals in groups 2 and 3. Subsequently, BPE was orally administered for the next 15 days to group 3. On the 16th day, behavioral tests were performed. Biomarkers of brain oxidative stress Malondialdehyde (MDA), (Peroxidase (PRx), Catalase (CAT), and Superoxid dismutase (SOD) and inflammation (cytokines: tumor necrosis factor -α (TNF-α), Interleukin 1β (IL-1β), and cyclooxygenase-2 (COX 2)) in plasma and hippocampus homogenates were assessed. Various protein expressions (Phospho-Tau (Ser404) (pTau Ser 404), Phospho-Tau (Ser396) (pTau Ser 396), synaptophysin, and the Nuclear factor kappa B (NFkB) signaling pathway) were analyzed using Western blot and immunohistochemistry in the hippocampus. The results show that BPE diminished lipid peroxidation and neuroinflammation, modulated specific protein expression, enhanced the antioxidant capacity, and improved spontaneous alternation behavior, suggesting that it has beneficial effects in AD.

Keywords: Aβ1-42; B. pendula leaf extract; NFkB; brain; inflammation; oxidative stress.

Grants and funding

This research was funded by a grant from the Ministry of Research, Innovation and Digitization, CNCS-UEFISCDI, project number PN-III-P1-1.1-TE-2021-0159 (NEUROPROTECT), within PNCDI III (TE60/2022).