The microbes on fresh processing tomatoes correlate closely with diseases, preservation, and quality control. Investigation of the microbial communities on processing tomatoes from different production regions may help define microbial specificity, inform disease prevention methods, and improve quality. In this study, surface microbes on processing tomatoes from 10 samples in two primary production areas of southern and northern Xinjiang were investigated by sequencing fungal internal transcribed spacer and bacterial 16S rRNA hypervariable sequences. A total of 133 different fungal and bacterial taxonomies were obtained from processing tomatoes in the two regions, of which 63 genera were predominant. Bacterial and fungal communities differed significantly between southern and northern Xinjiang, and fungal diversity was higher in southern Xinjiang. Alternaria and Cladosporium on processing tomatoes in southern Xinjiang were associated with plant pathogenic risk. The plant pathogenic fungi of processing tomatoes in northern Xinjiang were more abundant in Alternaria and Fusarium. The abundance of Alternaria on processing tomatoes was higher in four regions of northern Xinjiang, indicating that there is a greater risk of plant pathogenicity in these areas. Processing tomatoes in northern and southern Xinjiang contained bacterial genera identified as gut microbes, such as Pantoea, Erwinia, Enterobacter, Enterococcus, and Serratia, indicating the potential risk of contamination of processing tomatoes with foodborne pathogens. This study highlighted the microbial specificity of processing tomatoes in two tomato production regions, providing a basis for further investigation and screening for foodborne pathogenic microorganisms.
Keywords: foodborne pathogenic microorganisms; high-throughput sequencing technology; metagenomics; microbiome; processing tomato.