Purpose: To assess the accuracy of intraocular lens (IOL) power calculation in different age groups using various IOL calculation formulas.
Methods: Data from 421 eyes of 421 patients ≥60 years old (ages: 60-69, n = 131; 70-74, n = 105; 75-84, n = 158 and ≥85, n = 27), who underwent uneventful cataract surgery with SN60WF IOL implantation at John A. Moran Eye Center, Salt Lake City, USA, were retrospectively obtained. The SD of the prediction error (PE), median and mean absolute PEs and the percentage of eyes within ±0.25, ±0.50, ±0.75 and ±1.00 D were calculated after constant optimizations for the following formulas: Barrett Universal II (BUII), Emmetropia Verifying Optical (EVO) 2.0, Haigis, Hoffer Q, Hoffer QST, Holladay 1, Kane, Radial Basis Function (RBF) 3.0 and SRK/T. Results were compared between the different age groups.
Results: Predictability rates within 0.25D were lower for the eldest age group compared with the other groups using the EVO 2.0 (33% vs. 37%-53%, p = 0.045), Kane (26% vs. 35%-50%, p = 0.034) and SRK/T (22% vs. 31%-49%, p = 0.002). Higher median absolute refractive errors for all formulas were observed in the oldest group [range: 0.39 D (Haigis, Hoffer QSR)-0.48 D (Kane)], followed by the youngest group [range: 0.30 D (RBF 3.0)-0.39 D (Holladay 1, SRK/T)] but did not reach statistical significance. No significant differences between the groups in the distribution parameter were seen.
Conclusion: Current IOL power calculation formulas may have variable accuracy for different age groups. This should be taken into account when planning cataract surgery to improve refractive outcomes.
Keywords: IOL power calculation different ages; IOL power calculation in the elderly; IOL predictability; heteroscedastic statistical method; intraocular lens power calculation.
© 2023 Acta Ophthalmologica Scandinavica Foundation. Published by John Wiley & Sons Ltd.