Nonadditivity in interactions between three membrane-wrapped colloidal spheres

Biophys J. 2024 Feb 6;123(3):307-316. doi: 10.1016/j.bpj.2023.12.020. Epub 2023 Dec 29.

Abstract

Many cell functions require a concerted effort from multiple membrane proteins, for example, for signaling, cell division, and endocytosis. One contribution to their successful self-organization stems from the membrane deformations that these proteins induce. While the pairwise interaction potential of two membrane-deforming spheres has recently been measured, membrane-deformation-induced interactions have been predicted to be nonadditive, and hence their collective behavior cannot be deduced from this measurement. We here employ a colloidal model system consisting of adhesive spheres and giant unilamellar vesicles to test these predictions by measuring the interaction potential of the simplest case of three membrane-deforming, spherical particles. We quantify their interactions and arrangements and, for the first time, experimentally confirm and quantify the nonadditive nature of membrane-deformation-induced interactions. We furthermore conclude that there exist two favorable configurations on the membrane: (1) a linear and (2) a triangular arrangement of the three spheres. Using Monte Carlo simulations, we corroborate the experimentally observed energy minima and identify a lowering of the membrane deformation as the cause for the observed configurations. The high symmetry of the preferred arrangements for three particles suggests that arrangements of many membrane-deforming objects might follow simple rules.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Membrane Proteins*
  • Monte Carlo Method

Substances

  • Membrane Proteins