Microplastics (MPs), as a new substrate, provide a unique niche for microbial colonization in the freshwater ecosystems; however, the impacts of long-term MP exposure on colonized bacteria are still unclear. In this study, five MP types were exposed in a freshwater lake for approximately one year, and the MP particles, together with the surrounding water, were collected on days 60, 150, 250 and 330 during the in situ field experiment. Bacteria on the MP surface, as well as free-living bacteria in the surrounding water, were analyzed to evaluate the temporal dynamics of these bacterial communities. Results show that all five MP types exhibited signs of degradation during the exposure process. Additionally, the alpha diversity, community structure and composition of MP-attached bacteria significantly differed from that of the free-living bacteria in the surrounding water, indicating that the five MP types could provide a preferable niche for bacterial colonization in a freshwater environment. Proteobacteria, Chloroflexi, Verrucomicrobiota, Actinobacteriota and Firmicutes were the top five dominant phyla. Some plastic-degrading bacteria included in these phyla were detected, verifying that MP-attached biofilms had a certain degree of MP degradation potential. Some potentially pathogenic bacteria were also detected, suggesting an ecological threat for spreading disease in the aquatic ecosystem. Furthermore, the bacterial community and some metabolic pathways were significantly affected by the MP type (P < 0.01) and exposure time (P < 0.01), indicating that the presence of MPs not only alters the bacterial community structure and composition, but also influences their potential functional properties in freshwater ecosystems. Multiple factors, including the physicochemical properties related to MPs and the environmental parameters of the surrounding water, affect the community composition and the function of MP-attached bacteria to different degrees. Our findings indicate that the presence of MPs has a potential ecological impact on freshwater ecosystems.
Keywords: Bacterial communities; Lake; MP-attached biofilms; Metabolic pathway; Microplastics.
Copyright © 2023 Elsevier B.V. All rights reserved.